Packing a Two Meter Bell

10 decibel = 1 bel

Objectives of Antenna Effort

- A basic 6 element Yagi antenna with 10 dBi of gain
- Portable, pack-able, hike-able
- Assembly is easy, fast and no tools required
- No geometrically complex matching mechanism
- Disassembly in the dark
- Low cost, readily available materials
- 144.260 MHz, horizontal polarization
- Less concern about F/B ratio or bandwidth

PVC Pipe Sizes

PVC SIZE GUIDE

	PVC SCHEDULE 40	Actual OD (English)	Actual OD (Metric)	Average ID (English)	Average ID (Metric)	Min. Wall Thickness	Min. Wall Thickness
	1/2" PVC Pipe	13/16"	21.33 mm	5/8"	15.87 mm	1/8"	3.17 mm
>	3/4" PVC Pipe	1 1/16"	26.67 mm	7/8"	22.22 mm	1/8"	3.17 mm
>	1" PVC Pipe	1 5/16"	33.40 mm	1 1/16"	26.98 mm	1/8"	3.17 mm
	1 1/4" PVC Pipe	1 5/8"	42.16 mm	1 3/8"	34.92 mm	1/8"	3.17 mm
	1 1/2" PVC Pipe	1 7/8"	48.26 mm	1 5/8"	41.27 mm	1/8"	3.17 mm
	2" PVC Pipe	2 3/8"	60.32 mm	2"	50.80 mm	1/8"	3.17 mm

Element Diameter (Copper wire)

American Wire Gauge	Diameter	Diameter	Cross Sectional Area
(AWG)	(inches)	(mm)	(mm2)
0000	0.46	11.68	107.16
000	0.4096	10.40	84.97
00	0.3648	9.27	67.40
0	0.3249	8.25	53.46
1	0.2893	7.35	42.39
2	0.2576	6.54	33.61
3	0.2294	5.83	26.65
4	0.2043	5.19	21.14
5	0.1819	4.62	16.76
6	0.162	4.11	13.29
7	0.1443	3.67	10.55
8	0.1285	3.26	8.36
9	0.1144	2.91	6.63
10	0.1019	2.59	5.26
11	0.0907	2.30	4.17
12	0.0808	2.05	3.31
13	0.072	1.83	2.63
14	0.0641	1.63	2.08
15	0.0571	1.45	1.65
16	0.0508	1.29	1.31
17	0.0453	1.15	1.04
18	0.0403	1.02	0.82
19	0.0359	0.91	0.65
20	0.032	0.81	0.52
21	0.0285	0.72	0.41
22	0.0254	0.65	0.33
23	0.0226	0.57	0.26
24	0.0201	0.51	0.20
25	0.0179	0.45	0.16
26	0.0159	0.40	0.13

Wire Connections

Clamp Connector Mechanism

Clamp Connector at Feed

Coax conductor

Driven element

Mounted Clamp Connector

Open Connector

Prepared Element

Mounted Element

On-Line Yagi Calculator

DEO		ME	ите
REG	UIKE		113

Freq. [MHz]	144.3
Boomlength [m]	2.000
Gain [dBd] (approx.)	9.01
Elements	6 + -
Diameter of parasitic Elements [mm]	2.05 + -
Diameter of Boom [mm]	30 + -
Is the boom isolated from parasitics ?	⊙ yes ⊖ no
SHOW ME THE DETAILS	

Reflector Length : 1002 mm	
Reflector Position : 0 mm	
Dipole Position : 499 mm	
Director #1 Position : 655 mm , Length : 945 mm Distance Dipole - Dir. #1 : 156 mm	
Director #2 Position : 1029 mm , Length : 936 mm Distance Dir. #1 - Dir. #2 : 374 mm	
Director #3 Position : 1476 mm , Length : 928 mm Distance Dir. #2 - Dir. #3 : 447 mm	
Director #4 Position : 1996 mm , Length : 921 mm Distance Dir. #3 - Dir. #4 : 520 mm	
Directors / Parasitics are isolated. Please choose an isolater thicker than : 15 mm	

https://www.changpuak.ch/electronics/yagi_uda_antenna.php Javascript Version 12.01.2014, based on Rothammel / DL6WU

Design Summary

Frequency Gain Front to Back Impedance VSWR From Optimum

Yagi Optimizer 1990's Yagi Software K6STI Brian Beezley

Element Spacing and Length

	Elements		
Ref DE Dir 1 Dir 2 Dir 3 Dir 4	Position 0.0 504.3 627.7 918.1 1476.0 1996.0	Length 515.0mm 515.0 482.0 464.0 464.0 464.0	} - }
Boom	2.00m	0.97X	

E-Plane Plane Patterns Log Scale H-Plane

Gain, SWR, Front/Rear, Impedance

The Antenna Assembly

On a Tripod

Measurement Results

Return Loss

VSWR

Some Discoveries and Features

- Element length and weight is at (or beyond) the design limits of the spring loaded connectors.
 - The cantilever or pry-bar effect means that contact may become inconsistent
 - This design concept is more conducive to shorter elements, higher bands
- The impedance match measurements are low in frequency
 - The wire insulation is an unaccounted dielectric loading
 - The added inductance of the connector is unknown
- The physical alignment precision of these clamps is not perfect. Adjusted for parallelism visually
- The copper elements are easily bent.
 - They are easy to bend back into shape.
 - This is a good feature as the element don't break and are easily "repaired".
- The elements are color-coded for assembly
 - 3 different lengths.
- The element connections are not waterproof
 - not an all-weather antenna.
 - The driven element connection at the feed is particularity sensitive to water.
- The BNC connector out the back of the antenna makes for easy coaxial connection to the radio.