INTRFIL: Design and Construction of Round Rod Interdigitated Filters

Dennis Sweeney WA4LPR Blacksburg, VA

wa4lpr@arrl.net

Microwave Update 2023 Windsor, CT

INTRFIL: round rod interdigital filter program

- Exercise to extend the 1985 Ham Radio filter program
 - HR program made good filters but tap points problematic at high frequency
 - BW and ripple hard to control
 - No upper/lower limit on INTRFIL, usable from 500 to 6000 MHz, maybe beyond
- Written in Pascal
 - Source code available under General Public License (GPL)
 - GPL doesn't preclude commercial use but NO warranty, use at own risk
 - Can be freely modified and/or shared but must remain under GPL
 - Anyone want to write a nice GUI for INTRFIL?
 - Intended for anyone to use and not intended or supported as commercial software
 - Executables available or run on Windows, Mac, or Linux with Free Pascal Compiler and Geany IDE (Both available under GPL)

Example Filter

5760 MHz 5 resonator filter created with INTRFIL

35 MHz (3 dB) bandwidth for a transverter with 28 MHz IF

Note there are 7 rods. The end rods are coupling rods

The lid is 1.00 in wide

Overview

- INTRFIL Example
 - Running INTRFIL
 - Center Frequency, Adjusting Rod Length and Loss Estimates
 - Error messages
- QUCS Simulation (Quite Universal Circuit Simulator)
 - Simulated and Measured results
- Construction Notes
- Inside INTRFIL (time permitting)

Running INTRFIL

INTRFIL: Interdigitated Filter Program Version 1.0 Copyright (c) 2021 Dennis G. Sweeney WA4LPR

Calculated 3 dB BW & return loss for Chebychev filters Number of elements? 5 Center frequency (MHz) 5760 Butterworth (1) Chebychev (2) ? 2 **Slab line impedance Ripple Bandwidth (MHz) 30** Bandpass ripple (DB) 0.05 Ripple Return Loss = 19.4 dB 3 dB Bandwidth (MHz) = 35.26**Equivalent coax impedance** Load impedance 50 ground plane spacing in = 0.375Even, Odd Mode Impedances & Coupling rod dia in = 0.1875 d/h = 0.500 Slab Zo = 55.76 Co-ax Zo = 56.08 Virtual Ground Calculated odd/even impedances and coupling coefficients +1 +1 +1 Zoo[0] = 46.81 Zoe[0] = 53.19 K = 0.0639Zoe[1] = 49.97 Zoo[1] = 49.62K = 0.0035Zoo[2] = 49.67 Zoe[2] = 49.92 K = 0.0026Even Mode Odd Mode Zoo[3] = 49.67 Zoe[3] = 49.92 K = 0.0026Zoo Zoe $K = \frac{Zoo - Zoe}{Zoo + Zoe}$ Zoo[4] = 49.62 Zoe[4] = 49.97 K = 0.0035Zoo[5] = 46.81 Zoe[5] = 53.19 K = 0.06395

Bold denotes required inputs

(not in actual program)

Simulation with QUCS

Data for simulation model using coupled lines

Zs = 111.52

Zooprime = 80.66 Zoeprime = 101.71 Zooprime = 89.40 Zoeprime = 90.54 Zooprime = 89.55 Zoeprime = 90.39 Zooprime = 89.55 Zoeprime = 90.39 Zooprime = 89.40 Zoeprime = 90.54 Zooprime = 80.66 Zoeprime = 101.71

Ct = 0.1845 pf Bar length = 10.044 mm

QUCS Simulation

Center frequency trimmed with C1-C5

Lines lengthened 2.5%

Measured Insertion & Return Loss. 3 dB BW = 36.96 MHz (calculated 35.26 MHz) Midband Loss = 7.5 dB (calculated 6.27 dB) 33.4 dB dwn @ 28 MHz removed 56.5 dB dwn @ 56 MHz removed

Simulated Insertion & Return Loss. 3 dB BW = 27 MHz Midband Loss = 6.26 dB. INTRFIL Center frequency tends to be high, rods lengthened 2.5% & tuned to 5760 MHz

Construction Notes

- Test filters made with a table top milling machine & lathe
 - Screws ¹/₂ way between each bar and ends open after a couple of diameters
- SMA connectors screwed in (1/4-36 tap) or 0.85" coax soldered in sidewalls
- d/h = 0.5 convenient with standard sized material
 - bars & rods obtained from www.onlinemetals.com
- Walls made with K&S brass strips, PCB material & 0.05" AL sheet
- Simpler methods with K&S strips and 0.141 coax rods?

Inside INTRFIL

Matthaei edge coupled filter (reference in paper) folded in half for an interdigitated structure

But doubles BW, elements in series now in parallel

INTRFIL divides specified BW by 2

Inside INTRFIL

$$K = \frac{Zoo - Zoe}{Zoo + Zoe}$$

d/h is fixed and s/h adjusted to produce calculated value of K.

K is a function of Zoo/Zoe which are complex functions of d/h and s/h:

$$K = f(Zoo/Zoe) = f(d/h, s/h)$$

An iterative algorithm determines s/h for a given K with d/h fixed but may not converge for some values of K, BW or ripple. INTRFIL reports a "failed to converge" error. Small changes in BW or ripple usually fixes this.

In Summary

- INTRFIL more complex than hairpin or pipe cap filters but much higher performance particularly in the stopband.
 - Stopband performance important in reducing out of band emissions and mutual interference when groups of microwavers gather
 - 3 and 5 element filters for 1.3, 2.3 & 5.7 GHz made with INTRFIL
- Detailed paper with 2.3 & 5.7 GHz filters to be published in QEX
 - Referenced papers available
 - Mechanical drawings

Getting INTRFIL

- Source and executables available from me or Blue Ridge Microwave Society group site: groups.io/g/brms
 - Must register to see "Files" folder
 - Version 1.1 edited to output metric dimensions
 - All internal calculation done in cm
 - MUD 1989 WGFIL waveguide filter program is also available on BRMS (executable and Pascal source)